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ABSTRACT 
 
An important motivation for particle simulation in a 
Variable Specific Impulse Magnetoplasma Rocket 
(VASIMR) is plasma heating by Radio Frequency (RF) 
electromagnetic waves.  Mathematical simulation helps 
with the design of an Ion-Cyclotron Radio Frequency 
(ICRF) antenna by showing where adjustments can 
maximize the power coupling and control the 
absorption profile of RF power into the plasma in the 
resonance area.  Not only should the ions gain high 
energy from the ICRF waves, but the heating must also 
be accompanied by a high antenna loading to reduce 
power loss in the RF circuit. 
 

INTRODUCTION 
 
Progress toward a reasonably self-consistent 
mathematical model in a Variable Specific Impulse 
Magnetoplasma Rocket (VASIMR)1,2,3 is examined.  
The goal of this modeling is to help understand the 
physics of the system behavior at the Advanced Space 
Propulsion Laboratory and to assist engineers in the 
design of a thruster suitable for flight testing. 

Computer simulation of plasmas are typically be done 
by using one of, or a combination of three general 
techniques: a fluid approximation, Vlasov / Fokker-
Planck models, and full particle descriptions.  The 
particle methods can give much more accurate results 
when fully kinetic descriptions are needed in systems 
where collisions may also be important.  Such systems 
include those with strong, resonant Radio Frequency 
(RF) ion heating, collision events resulting in large 
phase space changes for the particles and other non-
thermal effects, and for magnetic shielding of structures 
from the solar flare among others.   

Although particle codes require much more 
computational resources than other plasma simulation 
techniques, rapid growth in computer speed and 
memory in the last few years has made the particle 
description more tractable.4 The particle methods, 
presented by Particle-in-Cell (PIC) and direct 
simulation Monte-Carlo (DSMC) methods, are 
efficiently used for simulation of the Pulsed Plasma 
Thruster (PPT) 5, the Hall Thruster6 as well as the Ion 
Thruster7.  In this paper we use a particle method, 
which is called a trajectory method8, and combine it 
with other modeling techniques to produce a reasonably 
self-consistent model for the entire VASIMR system. 

 
Figure 1.   Geometry and magnetic field configuration 
for VASIMR. 
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The VASIMR system consists of three major magnetic 
cells, denoted as “forward,” “central,” and “aft”. 1,2,3  
An example of electromagnets with their corresponding 
magnetic field is demonstrated in Figure 1. 
 
The forward end-cell provides for the injection of gas to 
be ionized into the plasma state; in this case by 
electromagnetic waves that are produced by the helicon 
antenna.  The central-cell acts as an amplifier and 
serves to further heat the ions in the plasma by 
electromagnetic waves produced by an antenna 
operating near the Ion-Cyclotron Radio Frequency 
(ICRF). The aft end-cell ensures that the plasma will 
efficiently detach from the magnetic field to provide a 
highly directed exhaust stream with high and variable 
specific impulse.  This configuration allows the plasma 
exhaust to be guided and controlled over a wide range 
of plasma energies and densities. 
 
The choice of the modeling system here is made on the 
basis of the expected operational requirements for a 
flight system.  Currently, the VASIMR system is under 
development for a first space flight experiment using 10 
kW of DC electric power.  In the future, several 
megawatt VASIMR thrusters can be considered for 
human interplanetary flights to Mars and beyond8.  The 
typical values of operational parameters are presented 
in the Table 1. 

Power

Mass
Temperature

Density
Mag. Field

Plasma radius
Plasma length

Specific impulse
Propel. flow rate
Thrust

Exhaust velocity
Efficiency

Propellant species

    Low Power               High Power

(Watt)             104    > 107

(kg)        20 - 50 < 20000

(eV)          5 - 50 10 - 100
(eV)           100 10 - 1000

(m-3)         1018 - 1019    1019 - 1021

(Tesla)            < 1     < 3
(m)          0.025     0.1

(m)           0.5  0.5 - 1
(sec) 5000(He), 104(H)

(mg/s)      4(He), 1(H)     
(N)   0.2(He), 0.1(H)
(m/s)      5•104(He), 105(H)

        ≈≈ 0.5    > 0.5
        He, H           H, He, Li, NH3,

          CH4,Xe, others
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3000 To 30000
104 →→ 102

> 300 →→ > 30
3 x 104 →→ 3 x 105

Table 1.  Typical values of the VASIMR operating 
parameters 
 
This paper concerns the modeling of a low power 
VASIMR thruster.   

 
MATHEMATICAL MODEL 

 
The magnetic field in the VASIMR is a sum of the 
fields generated by the magnet coil currents, time 
varying (RF) currents, and the steady state plasma: B(r, 
φ, z, t) = B0 (r, z) + BRF (r, φ, z, t) + Bp (r, z).  The 
electric field is a sum of the time varying (RF) electric 

field and steady state field produced by the plasma: E(r, 
φ, z, t) = ERF (r, φ, z, t)  + Ep (r, z).  In general, there is 
also the possibility of an applied steady state bias field, 
but it is not considered in the present system.  Here, r, 
φ, z represent the radial, azimuthal and axial 
coordinates in a cylindrical coordinate system, and t 
represents time.  In the article we use a bold font for the 
vector variables.  All equations are written in SI units. 
 
The calculations for VASIMR currently incorporate six 
integrated models for calculation of these fields as 
shown in Figure 2.  More details for each of the physics 
models used in these calculations are given in later 
sections.  The calculation proceeds as follows (see 
Figure 2). 

Magneto-static
Equations

Ion Motion

Electric Field

Particle to Grid
Weighting

RF Code
EMIR

xi, vi

Ep

ni
B0

BRF(t),
 ERF(t)

B0

ni

Plasma Magnetic Field

jiBp

Figure 2:  Mathematical simulation of plasma in 
VASIMR 
 
First, the magnetostatic field produced by the magnet 
coils, B0 (r, z), is accurately generated.  This field does 
not change throughout the remaining calculation. 
 
Second, the RF fields, ERF (r, φ, z, t) and BRF (r, φ, z, t), 
are calculated using a Maxwell equation solver with a 
linearized cold plasma conductivity tensor and B0 (r, z).  
Damping in the cold plasma model is provided by a 
single de-correlation parameter and plasma density, n(r, 
z), which are initially assumed.  The de-correlation 
parameter adjusts the absorption and electric field 
profile near the first harmonic ion resonance in the 
plasma.   
 
Third, a fully nonlinear particle model, that is currently 
collisionless, calculates the ion positions and velocities 
xi(t), vi(t) based on Newton’s law using the Lorentz 
force calculated from the static and RF fields obtained 
from the Maxwell equation solvers in a three-
dimensional space. 
 
Fourth, the ion density, ni(r, z) and ion current density 
ji(r, z) are calculated from the ion positions and 
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velocities averaging over the gyro-motion, using a 
particle to grid weighting.  The resulting ion density is 
approximately equal to the electron density in a 
quasineutral approximation, and it is fed back into to 
the plasma conductivity tensor for the next iteration 
with the RF Maxwell equation solver.  The iteration is 
continued between these two models until the plasma 
density becomes constant.  Presently, in lieu of a fully 
nonlinear RF plasma response, the iteration process 
proceeds further by adjusting the de-correlation 
parameter in the cold plasma dielectric, and hence the 
field pattern near resonance, until the power absorbed 
by the ions in each model converges 
 
The fifth step iterates over the previous models using 
ni(r, z) and a Boltzmann approximation for the electron 
distribution to solve Poison’s equation for the steady 
state plasma potential giving Ep (r, z).  This field further 
modifies the plasma density and hence the RF coupling. 
 
The steady state plasma current density, ji(r, z) becomes 
important in the exhaust region where Bp(r, z) can 
become significant compared with the fields from the 
magnet coils.  Thus, the sixth and final step calculates 
steady state magnetic field corrections caused by the 
plasma in the exhaust region. 

 
 
Figure 3.  Scale lengths of 10 kW VASIMR thruster. 

The approximations and basic physics parameters used 
in the models can be justified for a low power VASIMR 
device as shown in Figure 3.  The Debye length λD is 
much less than plasma radius rp which makes the 
assumption of plasma quasi-neutrality good everywhere 
except in very localized sheath regions.  Although 
collisional processes can play an important role in the 
plasma source region, the plasma can be assumed 
reasonably collisionless in the central section so long as 
the mean free path λmfp for various collision processes is 
much larger than plasma dimensions.  The following of 
only the ion species in the particle simulation can be 
justified by the fact that electrons are attached to the 
magnetic field through most of the region of interest, 
and gyrate with a frequency much higher than the 
applied RF frequency for the system.  Ions are normally 
attached to the magnetic field inside the thruster and the 
beginning of the exhaust area.  However, they detach at 
distance of 1m from the thruster when the ion Larmor 
radius ri

L becomes larger than the magnetic field 
curvature. The plasma currents generated in the exhaust 
region will allow the entire plasma to detach in either a 
stable MHD equilibrium or quasistatic turbulent state. 
 
In the mathematical model of the magnetoplasma 
thruster, the body of the rocket, the power plant and 
other hardware is assumed not to affect the electric and 
magnetic fields of the thruster and hence excluded from 
the consideration.  
 
1) Magnetostatic Equations. 
 
The magnetostatic problem is a steady-state case of two 
vector Maxwell equations: 

0000 ,
1

ABjB ×∇==×∇
µ

,  (1) 

where B0 is the vacuum magnetic induction vector, ì  
is the magnetic permeability, j0 is the current density in 
electromagnets and A0 is the magnetic vector potential. 
When modeling the VASIMR system, the assumptions 
of cylindrical symmetry and constant magnetic 
permeability ì are valid.  In that case, the magnetic 
vector potential A0 (as well as current density vector 
j0), written in the cylindrical coordinate system (r, φ, z), 
has only an azimuthal nonzero component: A = (0, 
Aφ(r, z), 0) and the problem (1) can be rewritten in the 
following form:    
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where Φ(r, z) = r Aφ(r, z) is the magnetic flux. 
 
Equation (2) is solved together with homogeneous 
boundary conditions Φ = 0 at the symmetry line (r = 0) 
and at the computational domain boundary, located far 
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enough from the current source (r = 10 m, z = ± 10 m).  
The finite difference method is used for discretizing of 
equation (2) using a non-uniform mesh, adapted to the 
coil geometries and computational domain:  

zrij

zrij2/1j2/1i

j

1j,iij

1j

1j,iij

i

2/1i

i2/1i

j,1iij

1i2/1i

j,1iij
2/1j

N or1  j  or N or 1  i ,0  Ö

1-,...,N2  j ;1-,...,N2 i ;fzr

zzr

r

rrrr
z

===

===

=










 −
+

−
+

+






 −
+

−

−−

+

−

−−

+

+

−−

−
−

∆∆

∆
ΦΦ

∆
ΦΦ∆

∆
ΦΦ

∆
ΦΦ

∆

  (3) 

 
The finite difference scheme (3) has a second order of 
approximation for the “smooth” non-uniform mesh, i.e. 

when 
i1i
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 are bounded.  The 

resulting system of linear algebraic equations is solved 
by efficient iterative solver10. 
 
Since equation (2) is linear it can be solved for the each 
single coil separately, which gives less computational 
error for the same number of grid points.  Then the final 
magnetic induction solution is calculated by 
superposing the single coil solutions and interpolating. 
 
Figure 1 demonstrates the numerical solution for the 
vacuum magnetic field for a 10 kW VASIMR thruster.  
As numerical experiments show, to calculate magnetic 
field with less than 0.1% error, one needs to use a non-
uniform mesh with 200 x 500 mesh points.  The 
accuracy of the numerical solution can be estimated by 
using the known semi-analytical solution of the 
magnetic field on the symmetry line. 
 
2)  ICRF Electromagnetic Field Calculation 
 
In the EMIR code11, the RF electric field, ERF, magnetic 
field, BRF, and RF antenna current density, jRF, are 
expanded in a periodic Fourier sum in the azimuthal 
coordinate to reduce the three-dimensional problem to a 
weighted sum over two-dimensional solutions. Implicit 
time dependence of tie ω−  is assumed as well as 
azimuthal symmetry of the equilibrium quantities, so 
that the fields and currents can be expanded into 
azimuthal modes: 

∑= −

m

tiim
mRF e)z,r()t,z,,r( ωφφ EE , (4) 

where m is an azimuthal mode number and ω is RF 
frequency. 
 
The RF fields are obtained from the EMIR code by 
solving Maxwell’s equations, written in harmonic form: 
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2
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(
c
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(5) 

RFRF i BE ω=×∇ .  (6) 
In the current EMIR implementation, the plasma 
current density jP is related to the electric field by a 
collisional cold plasma conductivity tensor 

RFp ˆ Ej ⋅= σ  with collisional de-correlation.  Equation 

(5) can then be represented by system of independent 
equations with respect to Em: 
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ˆiˆ += IK  is a cold plasma dielectric tensor: 
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and jm is the current density externally applied by an 
antenna.  The entries of the dielectric tensor depend on 
the plasma density ni and the vacuum magnetic field B0 

and the driven frequency ω for a multiple-ion plasma as 
follows: 
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where the sum is over the electrons and all ion species.  
Absorption is introduced in the cold plasma model by 
adding an imaginary de-correlation frequency to the RF 
driven frequency, which is equivalent to adding an 
imaginary particle mass in the dielectric tensor 
elements. 
 
Because the conductivity along magnetic field lines in 
the plasma is so large compared with the conductivity 
in other directions, the parallel plasma current 
effectively shorts out the component E||RF that is 
parallel to B0.  The solution of Maxwell’s equations is 
considerably simplified by neglecting this parallel field 
component (but not the parallel current) giving a 
relation between axial and radial components of ERF:  

Ez = - B0z Er / B0z.   (8) 
 
The final system of equations for Er and Eφ has the 
following form 
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where α=B0rR/(B0zr), R is the radius of a perfectly 
conducting wall boundary.  Boundary conditions for 
equations (9, 10) are derived from the property, that the 
tangential component of Em vanishes on the boundary r 
= R, and z = 0, L.  This gives Er = Eφ = 0 at z = 0, L 
and at r = R.  In the discretization, Equations (9) and 
(10) are solved with respect to the dependent variables 
rEr and rEφ.  
 
The power coupled to the plasma must equal the power 
emitted by the antenna according to Poynting’s theorem 

( ) 0Vd)Re(dV])(Re[
2

1

VV

*
ANTpRF =∫ ∂⋅+∫ +⋅

∂
nSjjE , 

where S = (ERF × BRF
*)/(2µ0) is the complex Poynting 

vector and n is the unit vector normal to the integration 
surface.  Taking the volume of integration over the 
perfectly conducting boundary eliminates any 
contributions from the Poynting flux through the 
boundaries.  Using the conductivity tensor to calculate 
the plasma current and evaluating the volume integral 
gives the total power absorbed by the plasma for a 
known antenna current.  Convergence of the difference 
scheme can be measured by calculating the power 
generated by the antenna and comparing it with the 
absorption in the plasma. 
 
The RF power absorption by the plasma for a known 
antenna current determines the plasma loading 
resistance, which is a very important parameter for an 
antenna design.  In a lumped circuit model, the 
resistance for each antenna segment can be defined as 
twice the power emitted by that segment divided by the 
square of the current in that segment.  To efficiently 
couple RF power, the plasma loading resistance for the 
entire antenna must be substantially larger that the 
vacuum loading resistance which is caused by finite 
resistance effects throughout the entire circuit driving 
the antenna. 
 
In many cases, good antenna designs permit a 
reasonably accurate solution using just one major mode 

m.  For more accurate calculations, several m modes are 
used and the system (9, 10) is be solved independently 
for each m, and the final solution in real space is 
obtained by summing over the modes. 
 
In Figure 4 we show the RF electric field amplitudes 
and absorbed power for the m = -1 mode (m = 1 for the 
opposite magnetic field direction) propagating from the 
antenna to a magnetic beach, where ω  is equal to the 
ion gyro-frequency.  The m = -1 mode penetrates to the 
axis with the correct polarization to accelerate ions in 
the direction perpendicular to the static magnetic field.  
A good antenna design for the ICRF section will excite 
primarily the m = -1 mode and produce a loading 
resistance that is high enough for the desired power of 
6-8 kW to be coupled by the RF feed system, matching 
network, and transmitters. 
 

 
 
Figure 4.  Contours of the electric field component 
having the proper polarization for ion absorption for m 
= -1. 
  
3)  Particle Dynamics. 
 
The ion motion satisfies the following equation of 
motion: 

)(e
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d
m i

i
i EBv

v
+×= .      (11) 

The single particle trajectories are integrated from 
equation (11) with an adaptive time-scheme, which can 
quickly solve extensive particle simulations for systems 
of hundreds of thousands of particles in a reasonable 
time (1-2 hours), and without the need for a powerful 
supercomputer. 
 
The particle motion problem (11) can be rewritten in 
the form  

),,t(f
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d
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and can be solved efficiently by the semi-explicit 
scheme, often referred to as leap-frog4: 
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The scheme has a second order, when  
n
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bounded.  Numerical experiments show that the method 
described above conserves the kinetic energy of the 

particle 
2
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W

2
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i =  for the magnetostatic case, while 

the first order explicit scheme does not. 
 
Particles in the electro-magnetic field have oscillated 
spiral-shaped trajectories with corresponded Larmor 

radius 
eB

vm
r i

L

⊥=  and Larmor period 
Be

m2
t i
L

π
= . 

Since the magnetic induction B is very nonuniform, the 
Larmor period can have very wide range of values.  To 
reduce the trajectory calculation time without reducing 
the accuracy, it is reasonable to choose non-uniform 
time step to be proportional to the Larmor period: 

 
t

L

N
t

t =∆ ,       (14) 

where Nt is a number of the time steps per Larmor 
period.  In most of our simulations we choose Nt = 100. 
 
Figure 5 illustrates magnetic field lines and typical ion 
trajectories in the exhaust area of the VASIMR.  One 
can see the beginning of the particle detachment from 
the magnetic field in the exhaust area with weak 
magnetic field.  Since the magnetic flux Brp

2
  is a 

constant, where rp is a plasma radius, the magnetic field 

goes down as fast as 2

pr − .  Since the magnetic moment 

B2

vm 2

i ⊥ is approximately constant, the perpendicular 

velocity ⊥v  goes down as fast as rp
-1.  This makes the 

Larmor radius Lr  go up as fast as rp. 
 

 
Figure 5.  Magnetic field lines and test ion trajectories 
in the VASIMR.  Four trajectories with the same initial 
velocity but different radial position are observed.  

  
Figure 6 demonstrates the behavior of the axial and 
parallel (to the magnetic field) velocities for test 
particles from Figure 5.   

 
 
Figure 6.  Axial (solid line) and parallel to the magnetic 
field (dashed line) velocity propagation for the test ion 
trajectories shown at Figure 5.  
 
One can see that parallel velocities reach a maximum 
and then go down as the magnetic field line departs 
from the ion trajectory, which illustrates the effect of 
plasma detachment.  The axial velocity, which is 
responsible for the directed thrust of the rocket, 
approaches an asymptotic value, which also 
demonstrates detachment.   The efficiency of the ICRF 
can be quantitatively estimated by the ratio of the final 
total axial velocity of the ions to the initial total 
velocity.  The ratio is much larger than one (around 3), 
thus increasing the directed ion energy by factor 9. 
 
4)  Particle to Grid Weighting 
 
The ion density ni is calculated by using weighting 
method4 for method of trajectories8.  With a given 
distribution for the initial position and velocity vector, 
a big number (order of 105) of ion trajectories is 
calculated.  Every single trajectory is used to generate a 
number of particles distributed along it with equal time 
step between them.  Plasma density clouds with a 
certain weight and a size of the finite difference cells 
are produced around each particle point, which after 
summation, became discrete ion density ni defined 
constant at each finite difference cell, using the 
following formula 

 ∑ −=
k

kjiji )(Qw)(n xXX ,   

where Xj is a position of the j-cell, xk is a position of k-
particle, wI is a particle weight, Q(.) is a cloud density 
function.  In our simulation we used continuous piece-
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wize-linear function with a support equal shape of the j-
cell.  The particle weight wi is calculated, such that it 
makes the grid density equal given value at given point: 

 0
i0i n)(n =X    

The example of the ion density, calculated by particle 
method, is shown in Figure 7. 

 
 Figure 7.  Ion density in the exhaust area of VASIMR. 
 

The similar technique is used to calculate the ion 
density ji, ion energy Wi, ion energy spread 
(“temperature”) Ti and heat flux of the plasma Hi: 
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To calculate plasma current density accurately, using 
particle-to-cell weighting method, one needs to choose 
a cell size less than the Larmor radius.  On the other 
hand, making cells too small forces us to run much 
more trajectories to keep enough number of particles 
per cell.  To satisfy 1% accuracy in particle-to-cell 
weighting method, we need to generate so many 
trajectories, that the number of particle positions xk per 
cell would be of order 10,000. 

 
5)  Electrostatic Equations. 

 
The electric field Ep can be calculated through electric 

potential ϕ: 
ϕ−∇=pE ,   (15) 

which satisfies the following Poisson equation: 
),nn(e ei −=− ϕ∆         (16) 

where the right-hand side is a plasma charge density.  
To avoid calculation of the electron density function, 
the Boltzmann relation is used: 

 





=

e
0e kT

e
expnn

ϕ
,  (17) 

where the bulk electron density n0 is assumed equal the 

ion density at the plasma inlet (assuming that ϕ=0 
there), and is a constant function along every magnetic 
field line.  
 
In the present simulations the electron temperature Te is 
assumed constant.  Due to the very small value of the 
Debye length for the studied plasma system: 

 4
2D 10

ne4

kT −<=
π

λ m,        (18) 

the Poisson equation (16) can be simplified to the 
quasineutrality relation: ni = ne, which gives the 
following formula for the electric potential: 

 





=

0

ie

n

n
ln

e

kT
ϕ .                  (19) 

To avoid ln(0) calculations, the ion density can be 
adjusted by some small positive constant.   Equation 
(19) has to be solved in the loop with particle 
simulations for the ions using an updated electric field.  
To achieve convergence in the self-consistent plasma – 
electric field calculations, under-relaxation (damping) 
is needed for updating the electric potential:  

new
*

new )1( ϕττϕϕ −+=  with a relaxation parameter τ 

< 1. 
 
Figure 8 demonstrates the electric potential solution for 
the plasma system shown at Figure 7.  The negative 
electric potential in the exhaust area generates positive 
an outcomming electric field, which accelerates ions 
and increases the VASIMR performance. 

 
Figure 8.  Electric potential in VASIMR.  The electric 
field is solved  self-consistently with the plasma 
density, shown in Figure 7. 
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6) Calculation of the internal plasma magnetic 
field 

 
Internal plasma magnetic field can be calculated using 
the same solver, as used for vacuum magnetic field 
calculation.  The only different in this calculation is a 
current density source jp.   The calculation of Bp should 
be iterated with calculation of plasma velocity and 
density.  
 
As numerical experiments show, the internal plasma 
magnetic field in the thruster core has an opposite 
direction to the vacuum magnetic field.  In the exhaust 
area, when ions detach from the vacuum magnetic field, 
the internal plasma magnetic field has the same 
direction.  In either case, the internal plasma magnetic 
field is thousands time less than vacuum magnetic field 
for the studied range of plasma parameters. 
 

OBSERVATION OF ICRF HEATING  
 
Particle simulation in VASIMR demonstrates dramatic 
increase in perpendicular velocity of ions as they pass 
through the ion-cyclotron resonance area.  Further 
down stream, the orthogonal energy of the particles is 
converted into directed parallel energy due to the 
decrease of the magnetic field in the magnetic nozzle 
(Figure 9.) 
 

T⊥

E||

 |E|

 
 
Figure 9.  Plasma energy and temperature propagation 
on a symmetry line as a result of RF-heating and 
magnetic nozzle. 

 
To obtain a reasonably self-consistent picture of the 
ICRH absorption (Figure 10,) the ion trajectories are 
followed through the static and RF fields using the 
trajectory code VASIMR.  The iteration is performed 
by calculating the RF fields with the EMIR code, and 
using these fields to follow nonlinear ion trajectories 
with the VASIMR code on the gyro-frequency time 

scale.  The ion trajectories are used to generate RF 
power absorption values and a density input for the next 
EMIR calculation.  The codes are iterated until the 
density profile becomes reasonably stable, then the 
collisional absorption parameter in the EMIR code is 
adjusted and the iteration is continued until the power 
deposited by the RF system matches the power 
absorbed by the ion trajectories in a global sense. 
 

 
 
Figure 10:  RF power deposition contours 
 
The total power delivered by the RF amplifier is equal 
to the power delivered to the plasma, Pp, plus that 
dissipated by Joule heating in the circuit, Pc.  An 
efficiency for the delivery of RF power to the plasma 
can thus be defined as: 

cp

p

cp

p

PP

P

ρρ
ρ

η
+

=
+

= , 

where ρp  and ρc are the effective loadings by the 
plasma and circuit respectively. 
 
For Helium plasma densities in the range of 1 - 2 ⋅ 1019 
in the 10 kW thruster design, preliminary antenna 
designs in the model appear capable of achieving values 
of ρp around 300 milliOhms for each of the two phased 
array segments.  The vacuum loading of the circuit, ρc, 
will depend on the details of the feed system, but it is 
expected to be much lower than 300 milliOhms.  A 
typical goal for the circuit design might be less than 50 
milliOhms giving an RF power delivery efficiency, η ~ 
85%.  This level of efficiency for the power 
transmission is probably acceptable, but higher values 
of ρp and lower values of ρc are clearly desirable. 
 

CONCLUSION 
 
The described particle simulations in VASIMR 
demonstrate ion heating by ICRF waves and 
detachment from the nozzle.  The codes developed so 
far have already been used to help VASIMR 
researchers design an experimental ICRF antenna. 
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In the future, we plan to make our simulation technique 
more advanced and closer to the reality of the physical 
system.  This effort will involve implementing the 
following physical effects: 1) calculate the electron 
temperature as a function of space using information 
about neutral particles in the system; 2) calculate the 
internal plasma current through the plasma momentum 
stress tensor, which will cause magnetic field distortion 
in the nozzle region, 3) add Monte-Carlo collision 
operators to study the effects of charge exchange on the 
accelerated ions and the heat loads from such a particle 
flux on the antenna and rocket body, 4) benchmark 
loading results with experimental measurements, and 
look for inconsistencies with the model’s assumptions,  
5) evolve more efficient antenna designs to improve 
plasma loading, 6) study turbulent effects in the plasma 
nozzle region, and 7) add more consistent nonlinear 
local feedback between the particle solution and the RF 
Maxwell solver. 
 

NOMENCLATURE 
 
A  magnetic potential (Weber / m) 
B magnetic induction (0 – 1 Tesla) 
c speed of light (3 108 m / s) 
E electric field (Volt / m) 
e electron charge (1.6 10-19 Coulomb) 
F thrust (0.1 – 0.2 N) 
f right-hand side in the magnetostatic equation 
H heat flux (0-106 W / m2) 
I identity tensor 
Isp specific impulse (5000 – 104 s) 
i imaginary unit  
j current density (0 – 105 Ampere / m2) 
k Boltzmann constant (1.38 10-23 J / K) 
kTe/e electron temperature (1 – 10 electron-Volt) 
kTi/e ion temperature (10 – 100 electron-Volt) 
L plasma length (0.5 m) 
M VASIMR mass (20 – 100 kg) 
m particle mass (He ion: 6.68 10-27 kg) 
m&  propellant flow rate (10-6 kg/s) 
Nr, Nz mesh size (200 x 500) 
Nt time-step factor (100) 
n density (0 – 10-19 m-3) 
n normal-to-surface vector 
P power (104 Watt) 
Q particle cloud function 
R  radius of a boundary metal wall (m) 
r, φ, z cylindrical coordinates (radial, azimuthal and 

axial) 
rL Larmor radius (10-2 – 1 m) 
rp plasma radius (0.02 – 0.1 m) 
S Poynting vector 
t time (s) 
u exhaust velocity (104 - 105  m/s) 
V plasma volume (m3) 

v particle velocity (ion: 104 – 105 m / s) 
W energy (J) 
w  particle cloud weight 
X cell position (m) 
xi ion 3-D position vector (m) 
α coefficient in harmonic RF equation 
∆ri, ∆zj grid sizes 
∆tn time step size 

V∂  edge of the volume  
ε power efficiency (0.5) 
Φ magnetic flux (Tesla m2) 
ϕ electric potential (-100 - +10 Volt) 
η RF efficiency 
Κ̂   cold plasma dielectric tensor 
λD Debye length (10-4 – 1 m) 
λmfp ion mean free path (100 – 103 m) 
µ magnetic permeability (1.25 10-6 Henry / m) 
π 3.14159265358 
ρ loading (300 milliOhm) 
σ̂  cold plasma conductivity tensor (Siemens / s) 
Ω computational domain 
ω RF frequency (7 106  - 1.4 107 Hz) 
 
Subscripts: 
0 vacuum 
ANT ICRF antenna 
c cyclotron (gyro-) 
e electron 
i ion 
j cell 
i,j grid index 
k particle 
L Larmor 
l species index 
m mode number 
n time step 
p plasma 
RF radio-frequency 
⊥ orthogonal to vacuum magnetic field B0 
|| parallel to vacuum magnetic field B0 
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